Lorentz invamants (scalars)

$$
\begin{aligned}
& F^{\mu r} F_{\mu r}=2\left(\vec{E}^{2}-\vec{B}^{2}\right) \\
& F^{\mu r} \tilde{F}_{\mu r}=-4 \vec{E} \cdot \vec{B}
\end{aligned}
$$

where

$$
\tilde{F}^{\mu \nu} \equiv \frac{1}{2} \varepsilon^{\mu \nu \alpha \beta} F_{\alpha \beta}
$$

which means that

$$
\begin{aligned}
& \vec{E}^{\prime 2}-\vec{B}^{\prime 2}=\vec{E}^{2}-\vec{B}^{2} \\
& \vec{E}^{\prime} \cdot \vec{B}^{\prime}=\vec{E} \cdot \vec{B}
\end{aligned}
$$

remark:

$$
\tilde{F}^{\mu v} \tilde{F}_{\mu v}=-F^{\mu v} F_{\mu v}
$$

Application: The electromagnetic fells of a uniformly moving charge

Reference frame
K (lab frame) -observe a charge moving with velocity $\vec{v}=\vec{\beta} c$
K^{\prime} (rest frame of the change of)

Reference frame $K \quad(\vec{v}=r \hat{z})$

Reference frame K^{\prime}

Note: at $t=t^{\prime}=0$, the origins of K, K^{\prime} coincide.
In K^{\prime},

$$
\vec{E}^{\prime}=\frac{q \vec{x}^{\prime}}{r^{\prime 3}}, \quad \overrightarrow{B^{\prime}}=0
$$

$$
r^{\prime}=\left|\vec{x}^{\prime}\right|
$$

In K,

$$
\begin{array}{ll}
\vec{E}_{\perp}=\gamma\left(\vec{E}_{\perp}^{\prime}-\vec{\beta} \times \vec{B}_{\perp}^{\prime}\right), & \vec{E}_{\prime \prime}=\vec{E}_{\prime \prime}^{\prime} \\
B_{\perp}=\gamma\left(B_{\perp}^{\prime}+\vec{\beta} \times \vec{E}_{\perp}^{\prime}\right), & \vec{B}_{\prime \prime}=\vec{B}_{\prime \prime}^{\prime \prime}
\end{array}
$$

We know hat

$$
\begin{aligned}
& \vec{E}_{\prime \prime}^{\prime}=\frac{q \vec{x}_{\prime \prime}^{\prime}}{r^{\prime 3}}, \quad \vec{E}_{\perp}^{\prime}=\frac{q \vec{x}_{1}^{\prime}}{r^{\prime 3}} \\
& \vec{E}=\vec{E}_{11}+\vec{E}_{1}=\vec{E}_{11}^{\prime}+\gamma \vec{E}_{1}^{\prime}=\frac{q}{r^{3}}\left(\vec{x}_{11}^{\prime}+\gamma \vec{x}_{\perp}^{\prime}\right) \\
& \vec{B}=\vec{B}_{11}+\vec{B}_{\perp}=\gamma \vec{\beta}^{\prime} \vec{E}_{\perp}^{\prime}=\frac{\gamma_{q}}{r^{33}} \vec{\beta} \times \vec{x}_{\perp} \\
& \Rightarrow \\
& \vec{E}=\frac{\gamma_{g}}{r^{13}}\left(\vec{x}_{1 r}-\vec{v} t+\vec{x}_{\perp}\right) \\
& \vec{B}=\frac{\gamma_{q}}{c r^{\prime 3}} \vec{v} \times \vec{x}_{\perp} \\
& r^{12}=\gamma^{2}\left(\vec{x}_{11}-\vec{r} t\right) \cdot\left(\vec{x}_{11}-\vec{v} t\right)+\vec{x}_{\perp} \cdot \vec{x}_{1} \\
& =\gamma^{2} R_{11}^{2}+R_{1}^{2}
\end{aligned}
$$

where $\vec{R}_{11}=\vec{x}_{11}-\vec{v}_{t}, \quad \vec{R}_{\perp}=\vec{x}_{\perp}$

$$
\vec{E}=\frac{\gamma_{8} \vec{R}}{\left(\gamma^{2} R_{11}^{2}+R_{\perp}^{2}\right)^{3 / 2}}, \quad \vec{B}=\frac{\gamma_{8} \vec{r} \times \vec{R}}{c\left(\gamma^{2} R_{11}^{2}+R_{\perp}^{2}\right)^{3 / 2}}
$$

Note

$$
\begin{aligned}
& \text { Note } \\
& \begin{aligned}
\left(\gamma^{2} R_{11}^{2}+R_{\perp}^{2}\right)^{3 / 2} & =\gamma^{3}\left(R_{11}^{2}+R_{\perp}^{2}\left(1-\beta^{2}\right)\right)^{3 / 2} \\
& =\gamma^{3} R^{3}\left(1-\beta^{2} \sin ^{2} \psi\right)^{3 / 2}
\end{aligned}
\end{aligned}
$$

since $R_{\perp}=R_{\sin } \psi$. Thus

$$
\begin{aligned}
& \vec{E}(\vec{x})=\frac{q \vec{R}}{\gamma^{2} R^{3}\left(1-\beta^{2} \sin ^{2} \psi\right)^{3 / 2}} \\
& \vec{B}(\vec{x})=\frac{q \vec{v} \times \vec{R}}{c \gamma^{2} R^{3}\left(1-\beta^{2} \sin ^{2} \psi\right)^{3 / 2}}
\end{aligned}
$$

k

k^{\prime}

Electromagnetic Radiation
In the Lorenz gauge

$$
\begin{array}{ll}
\square \vec{A}=\frac{4 \pi}{c} \vec{J} & \square=\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\vec{D}^{2} \\
\square \Phi=4 \pi \rho
\end{array}
$$

$$
\square A^{\mu}=\frac{4 \pi}{c} J^{\mu}
$$

Let us examine

$$
\square \psi(\vec{x}, t)=4 \pi f(\vec{x}, t)
$$

General solution

$$
\psi(\vec{x}, t)=\psi_{0}(\vec{x}, t)+\psi_{1}(\vec{x}, t)
$$

where

$$
\square \psi_{0}(\vec{x}, t)=0
$$

ψ_{0} is fixed by initial conditions
But, ψ_{1} is not unique
Roughly, $\quad \psi(\vec{x}, t)=4 \pi \square^{-1} f(\vec{x}, t)$
Note that \square has a nontrivial eigenfunction with zero eigenvalue.

If $A \psi=0$

$$
\begin{gathered}
\operatorname{det} A=\prod_{i} \lambda_{i}=0 \\
A^{-1} \text { does not exist. }
\end{gathered}
$$

$A \psi=f \Rightarrow$
solution 4 either does not exist or exists but is not unique.

We will see that the solution to the inhomogeneous equation, $\psi,(\vec{x}, t)$ is non-unigue.
$\psi_{1}(\vec{x}, t)$ will be determined by imposing a physical condition: causality.

Green function technique

$$
\begin{gathered}
D_{x} G\left(x, x^{\prime}\right)=4 \pi \delta^{4}\left(x-x^{\prime}\right) \\
\delta^{4}\left(x-x^{\prime}\right)=\delta^{3}\left(\vec{x}-\vec{x}^{\prime}\right) \delta\left(x_{0}-x_{0}^{\prime}\right) \quad x_{0}=c t
\end{gathered}
$$

By translational invariance, $G\left(x, x^{\prime}\right)=G\left(x-x^{\prime}\right)$
Sufficient to solve

$$
\nabla G(x)=4 \pi \delta^{4}(x)
$$

Once you know $G(x)$, then

$$
\psi_{1}(x)=\int d^{4} x^{\prime} G\left(x-x^{\prime}\right) f\left(x^{\prime}\right)
$$

because

$$
\square \psi_{1}(x)=4 \pi \int d^{4} x^{\prime} \delta^{4}\left(x-x^{\prime}\right) f\left(x^{\prime}\right)=4 \pi f(x)
$$

Method of solution: Fourier transform
(convents a differential equation into an algebraic equation)

$$
\begin{aligned}
& G(x)=\frac{1}{(2 \pi)^{4}} \int d^{4} k \tilde{G}(k) e^{-i k x} \\
& \left(k \cdot x=k_{0} x_{0}-\vec{k} \cdot \vec{x}\right) \\
& \delta^{4}(x)=\frac{1}{(2 \pi)^{4}} \int d^{4} x e^{-i k \cdot x}
\end{aligned}
$$

Plug these into $\quad D G(x)=4 \pi \delta^{4}(x)$

$$
\begin{aligned}
& \Longrightarrow \quad-k^{2} \tilde{G}(k)=4 \pi \\
& \tilde{G}(k)=-\frac{4 \pi}{k^{2}}, \quad k^{2}=k_{0}^{2}-|\vec{k}|^{2} \\
& G(x)= \\
& \\
& =-\frac{4 \pi}{(2 \pi)^{4}} \int \frac{d^{4} k}{k^{2}} e^{-i k \cdot x} \\
& =
\end{aligned} \frac{-\frac{1}{4 \pi^{3}} \int d^{3} k e^{i \vec{k} \cdot \vec{x}} \int_{-\infty}^{\infty} d k_{0} \frac{e^{-4 k_{0} x_{0}}}{k_{0}^{2}-|\vec{k}|^{2}}}{l} l
$$

Problem!! singularity at $k_{0}= \pm|\vec{k}|$
\Rightarrow integral oven k does not exist!
Even though D^{-1} does not exist, we reed a strategy to solve $\square \psi=4 \pi f$
[or to solve $D G=4 \pi \delta^{4}(x)$]
Strategy: deform the integration oven ko linfinitesimal deformation) so that integral is well -defined.

Deform the contour by an excursion into the complex ko plane
№

Impose causality \Longrightarrow
"chooses" \qquad
\qquad
\qquad

$$
G_{R}(x, t)=0 \text { if } t<0 \quad R=\text { "retarded" }
$$

Equivalently

$$
G_{R}(x)=\frac{-1}{4 \pi^{3}} \int d^{3} k e^{i \vec{k} \cdot x^{\prime}} \int_{-\infty}^{\infty} d k_{0} \frac{e^{-i k_{0} x_{0}}}{\left(k_{0}-k+i \varepsilon\right)\left(k_{0}+k+i \varepsilon\right)}
$$

where $k \equiv|\vec{k}|$.
$\varepsilon>0$ infinitesimal
poles appear at $k_{0}= \pm K-i \varepsilon \quad\left(I m k_{0}<0\right)$

1. Suppose $x_{0}=t<0$

$$
\left|x_{0}\right|=-x_{0}
$$

Hence,

$$
G_{k}(x)=0 \text { if } t<0
$$

2. Suppose $x_{0}=t>0$

Close contour in lower half ko plane.

$$
\begin{aligned}
& \left|x_{0}\right|=x_{0} \\
& \int_{C_{2}} d k_{0} \frac{e^{-1 k_{0}\left|x_{0}\right|}}{\left(k_{0}-k+i \varepsilon\right)\left(k_{0}+k+i \varepsilon\right)} \\
& =\frac{-2 \pi i}{2 K}\left[e^{-1 k x_{0}}-e^{1 k x_{0}}\right] \quad \begin{array}{c}
\text { often } \\
\text { taking } \\
\varepsilon \rightarrow 0
\end{array} \\
& =\frac{-2 \pi}{k} \sin \left(k x_{0}\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
G_{R}(x) & =\frac{1}{2 \pi^{2}} \theta\left(x_{0}\right) \int d^{3} k e^{i \vec{k} \cdot \vec{x}} \frac{\sin k x_{0}}{k} \\
& =\frac{1}{\pi} \theta\left(x_{0}\right) \int_{0}^{\infty} k d k \sin k x_{0} \int_{-1}^{1} d \cos \theta e^{i k|\vec{x}| \cos \theta}
\end{aligned}
$$

where $d^{3} k=k^{2} d k d \cos \theta d \phi$

$$
\begin{aligned}
& G_{R}(x)=\frac{1}{\pi} \theta\left(x_{0}\right) \int_{0}^{\infty} K d k \sin K x_{0} \frac{1}{(k|\vec{x}|}\left[e^{e k|\vec{x}|}-e^{-i k \mid \vec{x}]}\right] \\
&=\frac{2}{\pi r} \theta\left(x_{0}\right) \int_{0}^{\infty} d K \sin k x_{0} \sin k r \\
&r \equiv \mid \vec{x}) \\
&=\frac{\theta\left(x_{0}\right)}{2 \pi r} \int_{-\infty}^{\infty} d k\left[e^{i\left(x_{0}-r\right) k}-e^{e\left(x_{0}+r\right) k}\right] \\
&=\frac{\theta\left(x_{0}\right)}{r}\left[\delta\left(x_{0}-r\right)+\delta\left(x_{0}+r\right)\right] \\
&=\frac{\theta\left(x_{0}\right)}{r} \delta\left(x_{0}-r\right)
\end{aligned}
$$

Thus,

$$
G_{R}(x)=\frac{\theta\left(x_{0}\right) \delta\left(x_{0}-|\vec{x}|\right)}{|\vec{x}|}
$$

You don't reed the $\theta\left(x_{0}\right)$, since $\delta\left(x_{0}-|\vec{x}|\right)=0$ if $x_{0}<0$.

$$
\theta\left(x_{0}\right)= \begin{cases}1, & x_{0}>0 \\ 0, & x_{0}<0\end{cases}
$$

Last time, we outlined a method to solve

$$
\square \psi(\vec{x}, t)=4 \pi f(\vec{x}, t)
$$

The solution to this inhomogeneous wave equation is

$$
\psi(\vec{x}, t)=\psi_{0}(\vec{x}, t)+\psi_{1}(\vec{x}, t)
$$

where
L"panticalar solution"
and

$$
\psi_{1}(x)=\int d^{4} x^{\prime} G_{R}\left(x-x^{\prime}\right) f\left(x^{\prime}\right)
$$

where $x \equiv(c t ; \vec{x})$ and

$$
\square_{x} G_{R}\left(x, x^{\prime}\right)=4 \pi \delta^{4}\left(x-x^{\prime}\right)
$$

Imposing causality, $1 . e . \quad G_{R}(x, t)=0$ if $t<0$, where $G_{R}\left(x, x^{\prime}\right)=G_{R}\left(x-x^{\prime}\right)$, we found that

$$
G_{R}(x)=\frac{\delta\left(x_{0}-|\vec{x}|\right)}{|\vec{x}|} \quad \begin{aligned}
& \text { retarded } \\
& \text { Green function }
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \psi_{1}(x)=\int d^{3} x^{\prime} \int_{-\infty}^{\infty} d x_{0}^{\prime} \frac{\delta\left(x_{0}-x_{0}^{\prime}-\left|\vec{x}-\vec{x}^{\prime}\right|\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|} f\left(\vec{x}^{\prime}, t^{\prime}\right) \\
&=\int \frac{d^{3} x^{\prime}}{\left|\vec{x}-\vec{x}^{\prime}\right|} f\left(x_{0}^{\prime}=t^{\prime}\right) \\
&\left.t^{\prime}=t-\frac{\left|\vec{x}-\vec{x}^{\prime}\right|}{c}\right)
\end{aligned}
$$

Definition: (t ' is the "retarded time")

$$
\begin{gathered}
{\left[f\left(\vec{x}^{\prime}, t^{\prime}\right)\right]_{\text {ret }} \equiv f\left(\vec{x}^{\prime}, t^{\prime}=t-\frac{\left|\vec{x}-\vec{x}^{\prime}\right|}{c}\right)} \\
\psi_{1}(x)=\int d^{3} x^{\prime} \frac{\left[f\left(x^{\prime}, t^{\prime}\right)\right]_{\text {ret }}}{\left|\vec{x}-\vec{x}^{\prime}\right|} \\
t^{\prime}=t-\frac{\left|\vec{x}-\vec{x}^{\prime}\right|}{c}
\end{gathered}
$$

For electromagnetic waves,
(Lorenz gauge)

$$
\begin{aligned}
& D A^{\mu}=\frac{4 \pi}{c} J^{\mu} \quad J^{\mu}(c \rho ; \vec{J}) \\
& \vec{A}(\vec{x}, t)=\frac{1}{c} \int d^{3} x^{\prime} \frac{\left[\vec{J}\left(\vec{x}, t^{\prime}\right)\right]_{\text {ret }}}{\left|\vec{x}-\vec{x}^{\prime}\right|} \\
& \Phi(\vec{x}, t)=\int d^{3} x^{\prime} \frac{\left[\rho\left(\vec{x}^{\prime}, t^{\prime}\right)\right]_{\text {ret }}}{\left|\vec{x}-\vec{x}^{\prime}\right|} \\
& \vec{E}=-\vec{\nabla} \Phi-\frac{1}{c} \frac{\partial \vec{A}}{\partial t} \quad \text { (In cos in its) } \\
& \vec{B}=\vec{\nabla} \times \vec{A}
\end{aligned}
$$

Since $A^{\mu}=(\Phi, \vec{A})$

$$
\begin{aligned}
& \square \vec{E}=-4 \pi\left(\vec{\nabla} \rho+\frac{1}{c^{2}} \frac{\partial \vec{J}}{\partial t}\right) \\
& \square \vec{B}=\frac{4 \pi}{c} \vec{\nabla} \times \vec{J}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \vec{E}(\vec{x}, t)=-\int \frac{d^{3} x^{\prime}}{\left|\vec{x}-\vec{x}^{\prime}\right|}\left[\vec{\nabla}{ }^{\prime} \rho+\frac{1}{c^{2}} \frac{\partial \vec{J}}{\partial t^{\prime}}\right]_{\text {ret }} \\
& \vec{B}(\vec{x}, t)=\frac{1}{c} \int \frac{d^{3} x^{\prime}}{\left|\vec{x}-\vec{x}^{\prime}\right|}\left[\vec{\nabla}^{\prime} x \vec{J}\right]_{\text {ret }}
\end{aligned}
$$

Note:

$$
\left[f\left(\vec{x}^{\prime}, t^{\prime}\right)\right]_{\text {ret }}=f\left(\vec{x}^{\prime}, t-\frac{\left|\vec{x}-\vec{x}^{\prime}\right|}{c}\right)
$$

In particular,

$$
\begin{gathered}
\vec{\nabla}^{\prime}[f]_{\text {ret }} \neq\left[\vec{\nabla}^{\prime} f\right]_{\text {ret }} \\
\hat{L}_{\text {fix }} t^{\prime}
\end{gathered}
$$

(and \vec{x} is fixed).
Use the chain rule!

